
  Frederiksen S1 

SUPPLEMENTAL MATERIAL 

Evaluation of folding midpoints and Hill coefficients for divalent ion titrations 

Hydroxyl radical footprinting data d summed over a subset of nucleotides (e.g., 180, 181, 

& 182) were fit to Hill isotherms by least-squares optimization in KaleidaGraph: 
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Each fit returned four parameters – the “unfolded” reactivity A, the maximal change in reactivity 

B, the midpoint [M2+]1/2, and the apparent Hill coefficient n – along with their associated errors 

δA, δB, δ[M2+]1/2, and δn.  Independently fitted values for multiple subsets of residues (e.g., 176-

177 and 180-182) were averaged, with appropriate weighting and assuming normally distributed 

errors, to yield the final values of [M2+]1/2
 and n for each individual folding transition.  Explicitly, 

given midpoints 
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" [M2+ ]1/ 2( )i  obtained for data over different residue subsets i, the 

averaged midpoints and associated errors were calculated as: 
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An analogous relation was used to average the apparent Hill coefficients and obtain their 

associated errors. 

Derivation of thermodynamic relations for models with non-constant Hill coefficients 

Model 1. Two site-bound metal ions, derived from solution or from the atmosphere. 
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We derive the free energy relations and apparent Hill coefficients (Weiss 1997; Garcia et 

al. 2011) for the following model of the P4-P6 folding transition in a background of 2 M NaCl: 

 

For simplicity, this scheme does not show additional diffusely associated ʻbackgroundʼ divalent 

metal ions, which are assumed to be equal in number for each species.  The scheme also does 

not show monovalent ions (Na+ herein), since we are considering the dependence of folding on 

the divalent metal ion concentration only.  Finally, the scheme neglects anions, since the 

divalent ion titrations minimally perturb the solution concentration of anions in the presence of 2 

M NaCl.  The Boltzmann weights for each state sum to the partition function for the system: 
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Here, K1 parameterizes the equilibrium between the first and second states (for associating a 

single divalent metal ion with the ITL/TR state), and K2 parameterizes the equilibrium for folding 

between the first state and the third state.  The free energy difference between the two ITL/TR 

states and F is then: 

! 

"G = #RTln P3
(P1+P2)
$ 

% 
& 

' 

( 
) = #RTln

[M2+ ]
K2

* 

+ 
, 

- 

. 
/ 

2

1+
[M2+ ]
K1

* 

+ 
, 

- 

. 
/ 

$ 

% 

& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 

 

The apparent Hill coefficient is defined by the thermodynamic relation: 
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Using equation S5 gives: 
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n = 2 "
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The fraction folded is given by: 
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At the folding midpoint [M2+]1/2, where by definition 

! 

P3
P1+P2

=1, the following relation holds (setting 

equation S8 equal to 0.5): 
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Equation S10 below can be derived by taking a Taylor expansion of 

! 

ln f /(1" f )[ ]  in equation S8 

with respect to ln[M2+] around the midpoint [M2+]1/2, and is a good approximation near the folding 

midpoint up to corrections logarithmic in [M2+]. 
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Using 

! 

n [M2+ ]1/ 2( )  given by equation S7, we can evaluate equation S10 at the midpoint to give: 

! 

n [M2+ ]1/ 2( ) = 2 " [M2+ ]1/ 2
K1+ [M2+ ]1/ 2

 

Indeed, equation S10 is the standard Hill form used for least-squares fits (see equation S1) to 

estimate nj and 

! 

[M2+ ]1/ 2( ) j , and associated errors δnj and 

! 

" [M2+ ]1/ 2( ) j , for each RNA variant j.  

These values were then fit to equation S11 by χ2 minimization (KaleidaGraph) to give the 
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parameter K1 with standard errors δK1, as shown in main text Figure 5.  Finally, for comparing 

each modified variant to the wild type RNA, the midpoints were substituted into equation S5; 

applying equation S9 gives  
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where 

! 

[M2+ ]1/ 2( )0  denotes the folding midpoint of the unmodified RNA, and (K2)0 and (K2)j are 

the K2 parameters fitted for the unmodified and variant RNAs, respectively.  Note that, as 

desired, this expression is independent of the divalent ion concentration at which the free 

energy difference between the unmodified and modified RNAs is evaluated.  The error on !!Gj

was dominated by uncertainty in K1; it was evaluated by recalculating !!Gj with K1 ± δK1. 

Model 2.  Linear expansion of the apparent Hill coefficient. 

This model makes no assumptions about the structural ensembles or their associated 

ion atmospheres and site-bound ions, although we continue to assume that the apparent Hill 

coefficient for all variants is the same at a given metal ion concentration [M2+] (but varies across 

metal ion concentrations). This model assumes that the apparent Hill coefficient can be 

expanded as a linear function of the logarithm of the divalent ion concentration, as is commonly 

seen in calculations as well as empirical fits to RNA folding isotherms.  Explicitly, we write the 

expansion near the folding midpoint 

! 

M2+[ ]1/ 2( )0of the unmodified RNA: 

! 

nHill M2+[ ]( ) = n0 +"n ln
M2+[ ]

M2+[ ]1/ 2( )0

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
 

(S12a) 

(S13) 

(S12b) 



  Frederiksen S5 

 
Here, n0 is the apparent Hill coefficient of the unmodified RNA near its midpoint.  For 

simplification, we let 

! 

" =
M2+[ ]

M2+[ ]1/ 2( )0
, the ratio of the metal ion concentration to the folding 

midpoint of the unmodified RNA.  Then equation S13 becomes: 
 

! 

nHill M2+[ ]( ) = n0 +"n ln #  
 
Integrating equation S6 gives the free energy for any variant j as: 
 

! 

"G j (#) = $n0RT ln # $
1
2
%nRT ln #( )2 + const  

 
The constant of integration (const) is readily determined by evaluating equation S15 at the 

folding midpoint of the unmodified RNA (γ = 1), where the free energy of a mutant is equal to 

ΔΔGj: 
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Finally, setting this expression equal to zero corresponds to evaluating 

! 

"G j (#) at the folding 

midpoint 
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[M2+ ]1/ 2( ) j  of the modified variant j: 
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Noting that the apparent Hill coefficient for the mutant at its midpoint is 

! 
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gives a compact expression for the free energy difference ΔΔGj associated with the modification: 
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In practice, we carried out independent least-squares Hill fits (see equation S1) to titrations for 

the unmodified and modified variants to yield nj and 

! 

[M2+ ]1/ 2( ) j .  Using equation S13, we then 
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carried out a least-squared fit to obtain n0 and αn, and their associated errors δn0 and δαn.  The 

midpoint values 

! 

[M2+ ]1/ 2( ) j  and the best-fit parameters for nj (equation S13) were then 

substituted into equation S18 to give ΔΔGj values.  The error on ΔΔGj was dominated by 

uncertainties in n0 and αn, and was estimated by recalculating ΔΔGj with n0 ± δn0 and αn ± δαn, 

and summing the observed deviations in quadrature. 

Calculation of P values 

 Values for ΔΔΔG were calculated by subtracting the ΔΔG obtained for Mn2+-induced 

folding from that obtained for Mg2+-induced folding.  The associated P values were calculated 

using the Gauss error function (erf) in Microsoft Excel, according to 
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where δΔΔΔG is the standard error of ΔΔΔG. 

Complete likelihood-based inference of metal ion rescue from footprinting gels 

 The analysis given above permits the inference of ΔΔG and ΔΔΔG values, as well as 

their errors, for metal ion rescue experiments using common tools (Excel & KaleidaGraph), but 

makes assumptions about the Gaussianity of the errors to propagate the errors.  Consequently, 

we have also carried out a complete likelihood-based analysis of the data without invoking such 

assumptions, using MATLAB scripts.  This analysis gives consistent results.  For completeness, 

we describe this analysis herein, presenting detailed equations for the high salt (2 M NaCl 

background) conditions. 

Likelihood form 

 We make the following assumptions for computing the likelihood that the cleavage 

intensities read from a footprinting gel are consistent with a thermodynamic model: 

(S19) 
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1. The folding is a two-state process, as described, for example, in equation S8.  The 

cleavage patterns of the unfolded and folded states are not known a priori but are to be 

estimated through the likelihood analysis. 

2. The amount of sample loaded in each lane varies due to pipetting errors.  The exact 

amount of this lane loading variation is a number to be estimated on a gel-by-gel basis.  

3. Further deviations of peak intensities from the prediction are due to statistical errors 

(shot noise), random errors in the SAFA analysis procedure, nuclease contaminants, 

and variations in background cleavage.  The latter issues in particular can affect 

residues in somewhat unpredictable ways.  We assume that the range of deviations 

differs for each residue and needs to be estimated through the likelihood analysis.  (For 

residues with large nuclease contaminants or background cleavage, we would hope that 

the analysis recognizes the large deviations from the model favored by the majority of 

residues and effectively downweights the contributions of anomalous residues.) 

4. We assume that the error at each residue is at least 10% of the mean cleavage intensity.  

Allowing the likelihood fits to assume smaller errors appears to lead to overfitting, in 

which some residues are assigned too much confidence. 

 Mathematically, the likelihood model is given by 
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Here, i is an index over lanes, and j is an index over residues.  The parameters are as follows: αi 

are the lane normalization parameters; σa is the lane loading error; Cj
unfold is the cleavage 

intensity of the unfolded state; ΔCj is the change in cleavage intensity between the unfolded and 

folded states; σj are the errors associated with each residue; and sj are the minimum errors 

assigned to each residue (set equal to 0.1 times the mean of DATAij across all lanes). 

(S20) 
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 This model has been implemented in MATLAB.  Given a prediction for the folding 

isotherm ffold, maximum likelihood estimates for Cj
unfold, ΔCj, αi, σj, and sa are determined by 

iteration.  It is first assumed that ai = 0, sj = constant, and the maximum likelihood cleavage 

patterns of the unfolded and folded states are estimated.  With these initial estimates, the sj are 

updated, then the ai, then the sa; and the procedure is iterated five times (empirically, after three 

iterations, the procedure appears to converge within 0.1 log likelihood units). 

 For the full likelihood analysis, a range of K1 and K2 were explored, varying both 

parameters from 10–2 mM to 102 mM and computing the likelihood in equation S20.  Contours of 

these likelihood fits are given in Figure S3; it is apparent that for each construct, a wide range of 

K1 and K2 are consistent with the data, though the two parameters are strongly correlated.  In 

particular, for low K1, a range of models with 

! 

K2( )2 / K1 = constant gives similar predictions for the 

fraction folded (equation S8) with similar likelihoods. 

Comparing likelihoods of thermodynamic models across different gels 

 One of the advantages of likelihood analysis is that replicates are not formally necessary 

to estimate errors like the σj of equation S20; these errors, and the corresponding likelihoods, 

are effectively read out for each gel from the intrinsic scatter of the data.  Nevertheless, it is still 

important to compare the likelihood analyses made with independent gels for consistency.  

Figure S3 shows likelihood contours (with log-likelihood within 2 of the maximum likelihood, 

corresponding to approximately ~95% confidence) for the experiments presented in the main 

text, with replicates shown as differently colored contours.  Replicates for each construct with 

each metal ion are in excellent agreement; their data can be combined (by multiplying 

likelihoods from replicates) with confidence and lead to tighter likelihood contours (black 

contours in Figure S3). 

Estimating rescue factors 



  Frederiksen S9 

 For the ΔG to be well-defined in Model 1 with respect to [M2+], the variation in free 

energy of the unfolded state needs to be the same across different constructs (but can be 

different for Mn2+ versus Mg2+), and thus K1 is a constant across constructs.  The posterior 

distributions for the relevant K1 parameter for the different constructs are given in Figure S7.  

These posterior distributions are obtained by integrating the likelihood estimates over ln(K2).  

The distributions do not strongly constrain K1 and are consistent with each other.  Our best 

estimate for K1 is given by the product of the posterior probabilities for the different constructs 

(black curve in Figure S4). 

 The posterior distributions of K2 are similarly broad.  However, to estimate ΔΔG, we are 

interested in the ratios of K2 (equation S12b) between the unmodified constructs and each 

phosphorothioate construct, which are better defined.  Carrying out the integrations over 

K1(Mn2+) and over K1(Mg2+), and convolving the posterior probability distributions for ΔΔG, gives 

the final distributions shown on the right hand side of Figure S5.  We note that the final 

distributions are symmetric and indistinguishable from Gaussian curves, although this was not 

assumed in the analysis.  Indeed, the underlying likelihood contours [Figures S3 and S5 (left)] 

are strikingly non-Gaussian. 

 Tables of the 95% confidence intervals for free energy values in equation S22 are given 

in Table S3.  It is apparent that only the A184 RP, A184 SP, and A184 PS2 constructs are 

consistent with metal ion rescue effects.  The experiments for G188 RP and G163 RP do not give 

evidence for significant rescue. The data and their errors are in excellent agreement with Table 

1 in the main text, which used simpler fits.  

A fully analogous likelihood-based analysis was carried out to implement fits to Model 2 

(linear expansion of the apparent Hill coefficient).  Again, the resulting values and confidence 
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intervals (Table S4) are indistinguishable within error from the simpler fits in Table 4 in the main 

text. 
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SUPPLEMENTAL MATERIAL FIGURE LEGENDS 

Figure S1: Strategies for constructing ΔC209 P4-P6 RNAs with site-specific phosphorothioate 

substitutions.  We used HPLC to separate synthetic phosphorothioate oligonucleotide 

diastereomers (Hougland et al. 2005; Frederiksen and Piccirilli 2009) and incorporated them into 

full-length ΔC209 P4-P6 RNAs via successive splinted enzymatic ligations (Moore and Sharp 

1992; Silverman and Cech 1999).  (A) Splint ligation schemes for RNA construction.  (B) 

Schematic of phosphorothioate linkages used in this work.  (C) Typical anion exchange HPLC 

trace showing the separation between RP and SP single-phosphorothioate diastereomers. 

 

Figure S2: A model using a constant Hill coefficient does not adequately fit the footprinting 

data.  The plots show Mg2+- and Mn2+-dependent (open versus closed symbols) folding of 

unmodified ΔC209 P4-P6 (top) and the A184 SP phosphorothioate variant in a background of 2 

M NaCl.  The data are fit to a Hill equation in which nHill either varies (solid lines) or is set equal 

to 2 (dashed lines). 

 

Figure S3: Likelihood analyses from independent gels give consistent results.  For each 

construct and metal ion, contours are shown marking values of K1 and K2 that have log-

likelihood within 2 of the maximum likelihood point for different experiments.  The black curve 

gives the analogous contour for the combined data, i.e., summing the likelihoods over the 

different experiments. 

 

Figure S4: Posterior distributions over ln K1 (the equilibrium constant for binding the “hidden” 

metal ion) do not exhibit a strong preference for particular values, and are consistent among 

different constructs. Black curves give final posterior distributions for K1(Mg2+) and K1(Mn2+) 
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assuming that these values are the same across all constructs (obtained by multiplying posterior 

distributions for all constructs). 

 

Figure S5: Estimating rescue factors for the different constructs. Left panels show log-likelihood 

contours (within 10 of maximum likelihood point) for the construct in Mn2+
 (blue) and Mg2+ (red); 

and for unmodified ΔC209 in Mn2+ (light blue) and in Mg2+ (light red). Right panel shows 

posterior probability for rescue factor for K2 (monitoring equilibrium constant between no metal 

ion and two metal ion state), after integration of the likelihood over ln K1, and making the 

assumption that K1(Mg2+) and K1(Mn2+) are the same for all constructs, with distribution shown in 

Figure S4.  Note that the rescue factor, when defined here in terms of ratios of K2, is related to 

ΔΔΔG by eq. S12b. 

 


